

Artificial Intelligence at the Intersection of Computer Science and Healthcare: A Comprehensive Review

Shah Zeb^{1*}

¹Washington University of Science and Technology, 2900 Eisenhower Ave, Alexandria, VA

¹szeb.student@wust.edu

Corresponding Author
Shah Zeb
szeb.student@wust.edu

Article History:

Submitted: 10-01-2026

Accepted: 09-01-2026

Published: 14-02-2026

Keywords

Artificial Intelligence, Machine Learning, Deep Learning, Healthcare, Predictive Analytics, Data Management.

Global Trends in Science and Technology is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).

ABSTRACT

AI has become a disruptive technology in healthcare that is using the breakthroughs in computer science to improve the fields of diagnostics, treatment planning, patient monitoring, and medical research. In this review, the author discusses the historical development of AI starting with the early rule-based systems about modern machine learning, deep learning, and natural language processing applications. The most important areas of healthcare use are medical imaging, predictive analytics, personalized medicine and robotic-assisted surgery. Issues of data quality, interpretability, ethical issues, and regulation are mentioned, and novel trends like federated learning, generative AI, and human-AI collaboration are stated, and AI has potential to enhance patient outcomes and healthcare efficiency.

INTRODUCTION

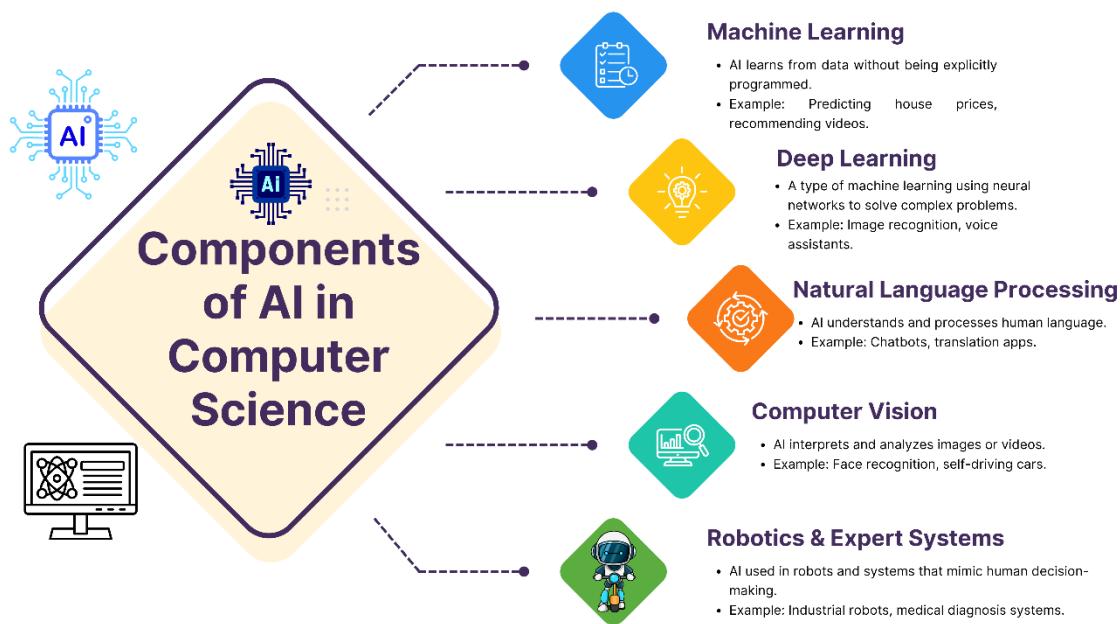
Artificial Intelligence (AI) has become one of the most impactful technologies of the 21st century that has radically changed various spheres, especially computer science and healthcare. AI, which is based on the field of computer science, is concerned with creating systems that can perform tasks that were traditionally performed by human intelligence, including learning, reasoning, problem solving, perception, and language understanding. In recent decades, the AI research accelerated due to the rapid increase of the computational power, data availability, and innovative algorithms and was implemented in the real world successfully [1]. The increased complexity of medical information, increased number of patients and need to provide them with accurate, efficient and cost-effective

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

medical care have caused a pressing necessity in the field of healthcare to develop intelligent solutions. Healthcare systems produce huge amounts of unstructured data, such as electronic health records, medical images, genomic sequences and real time sensor data [2]. Most classical analytical practices do not readily compute and understand such data. The power of AI, its ability to recognize patterns, experience learning, and data-based predictions, can serve to solve these issues.

The collision of computing technology and medical practice is the intersection of artificial intelligence and healthcare. The AI-based systems are currently being applied to assist clinical decision-making and enhance the accuracy of the diagnosis, treatment planning, and ultimately, patient outcomes [3]. The automation of medical images, disease predictive algorithms, virtual medical assistants and personalized medicine are some of the applications that show how AI is changing the way modern medicine is handled. Such developments do not only enhance efficiency, but also stand to minimize human error and increase access to quality healthcare services [4]. Even though it has the potential, implementing AI in healthcare does not occur without difficulties. Data privacy, ethical, algorithmic bias, interpretability, and regulatory compliance issues are issues that cast valuable questions of trust, safety, and accountability. This problem needs to be tackled by a multidisciplinary group of computer scientists, healthcare specialists, policymakers, and even ethicists [5].

This review mainly aims to give an overview of artificial intelligence in the border between computer science and healthcare. It will explore the roots of the AI methods, discuss the most significant healthcare uses of it, discuss the current obstacles, and outline the current trends that define the future of the given field. This review will aim to present important insights to researchers, practitioners, and students concerned with the role of AI in changing healthcare systems and improving the limits of computer science.


BASICS OF ARTIFICIAL INTELLIGENCE IN COMPUTER SCIENCE

Computer science is viewed as the foundation of Artificial Intelligence, as it utilizes concepts in algorithms, data structures, mathematics and computational theory to control intelligent behavior in machines. The principles of AI are aimed at creating models and systems, which can process information, learn by data, be able to reason about complex problems, and make informed decisions. These are the underlying principles of the current AI applications, including those deployed in the healthcare sector [6].

Machine Learning (ML) is among the fundamental foundations of artificial intelligence. It allows computer systems to acquire patterns and relationships based on data within the computer system without needing to be programmed to do so. The ML algorithms are mainly divided into supervised,

unsupervised and reinforcement learning [7]. In the context of supervised learning, the models are trained with marked datasets to conduct the classification and regression tasks that are commonly applicable in the diagnosis of diseases and predicting their outcomes. Unsupervised learning aims at finding hidden patterns in unlabeled data, which is essential in the clustering of patients and their abnormalities. Reinforcement learning is based on behavioral psychology and allows agents to learn the best possible actions by engaging in a particular environment, which is useful in optimizing treatment and medical robotics [8].

Figure 1. Components of AI in Computer Science

Machine learning, and specifically Deep Learning (DL), has improved the AI to a large extent thanks to the use of artificial neural networks and their multilayered nature. Such networks are engineered along with the human brain structure and functionality and allow extracting complex features of large-scale data. CNNs are not only good at image and signal processing, but RNNs and transformers are well on sequential and temporal data processing tasks [9]. These models are mostly influential in medical images, speech recognition and clinical text analysis. Another vital principle of AI that is critical is Natural Language Processing (NLP), which is aimed at making machines be able to comprehend, interpret, and produce human language. NLP applications in healthcare help to extract meaningful information out of unstructured clinical notes, medical literature and patient reports [10]. Computer Vision helps systems to perceive visual data, which is used to create the foundation of automated processing of radiological images, pathological slides, and video-based diagnostics. These are the original AI methods that are the computational backbone of intelligent systems. Their ever-evolution in the field of computer science has led to new advancement, imposing scale and

intelligence, of healthcare solutions, crossing the divide between complex data and useful medical insights [11].

ADOPTION OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Adoption of artificial intelligence in healthcare has been developing extensively in the last few decades in line with the same trends in computer science, availability of data, and use of medicine. Originally, AI in healthcare was mainly theoretical and early systems targeted rule-based expert systems that were intended to replicate human decision-making [12]. These systems were based on established rules and logical thinking to support clinicians during the diagnosis and treatment planning. An older instance was the development of the program MYCIN in the 1970s, which could advise on the use of antibiotic treatment by a series of clinical regulations. Although these expert systems proved the potential of AI in the medical field, they were not as powerful as they relied on manually encoded knowledge and they could not learn new information [13].

A transition to data-driven methods was seen in the 1990s and early 2000s as medical records have grown more and more digital, and as computational power has risen. Algorithms in machine learning started to displace more inflexible rule frameworks, and AI was able to find patterns and relationships in the clinical data itself [14]. The models that applied to supervised learning methods, such as, allowed predictive modeling of diagnosing disease and assessing risk, and those applying to unsupervised approaches allowed stratifying patients and detecting anomalies. In this time, AI systems were more able to work with more data and make more probabilistic estimates, as opposed to deterministic suggestions, and became more useful in clinical practice [15].

Over the last ten years, there has been a fast track of AI applications in the healthcare sector mostly owing to the advent of deep learning and big data analytics. The latest AI applications are capable of processing data that is highly dimensional and complicated, such as the imaging, genomic sequences, and constant monitoring of patients on wearables [16]. Convolutional neural networks have transformed the field of medical imaging analysis to be able to detect diseases like cancer, retinal diseases and cardiovascular abnormalities with expert quality results and accuracy. At the same time, natural language processing has facilitated the use of AI to create insights on unstructured clinical documents, scholarly articles and patient records to assist in making knowledge-driven healthcare-related decisions [17].

Other real-life applications of AI in healthcare include patient outcome predictive analytics, personalized medicine, robot-assisted surgery, virtual health assistants, and telemedicine systems. These applications reveal the shift towards the full-fledged healthcare management instead of the diagnosis-only, enhancing the patient outcomes and operational efficiency. Although this has

happened, there are still obstacles, such as data privacy, algorithmic biases, explainability of the AI models, and adaptation to current clinical processes [18]. However, the history of AI in health care is unfolding in a very predictable direction: in the beginning the systems were simple rule-based, then more advanced, learning-based systems were created that are now more and more helpful to clinicians and patients in more sophisticated medical settings. This development is still escalating, with the continuous research, developments in technology, and increasing the need to have smarter healthcare solutions [19].

AI APPLICATIONS IN HEALTHCARE

Artificial Intelligence is now a game-changer in the medical field, and it allows changes in healthcare to enhance the quality of diagnostics, treatment, patient management, and operational performance. Its uses are diverse in terms of clinical and administrative areas, which shows the flexibility and the prospects of AI to transform medical practice. Medical imaging and diagnostics may be seen as one of the most notable fields where AI is used in healthcare [20]. Deep learning and especially Convolutional Neural Networks (CNNs) are methods that enable computer methods to process radiographs, CT scans, MRI images, and pathology slides with high precision and accuracy. Artificial intelligence systems are able to recognize anomalies, identify diseases, and even measure the degree of such conditions as tumors or vascular blockage [21]. This improves the early diagnosis, minimizing the mistakes in diagnosis, and helps the radiologists make more qualified decisions.

Applications of AI in Healthcare

1

Medical Imaging & Diagnostics

- AI can analyze X-rays, MRIs, CT scans, and pathology slides to detect diseases like cancer, pneumonia, or fractures.
- Example: Google's DeepMind AI has been used to detect eye diseases from retinal scans.

2

Drug Discovery & Development

- AI helps predict how new drugs will interact with the body and identify potential candidates faster.
- This can reduce the time and cost of bringing new drugs to market.

3

Virtual Health Assistants & Chatbots

- AI-powered assistants can answer patient questions, schedule appointments, and remind patients to take medications.
- Example: Chatbots can guide patients through minor health issues or provide mental health support.

4

Personalized Medicine

- AI can analyze a patient's genetic makeup and health records to recommend treatments tailored specifically to them.
- This improves effectiveness and reduces side effects.

5

Predictive Analytics

- AI can predict disease outbreaks, hospital readmissions, or patient deterioration by analyzing historical data.
- Hospitals use AI to prioritize care for high-risk patients.

Figure 2. Applications of AI in healthcare

Another important use is the clinical decision support systems (CDSS). AI-based CDSS combine

patient information based on electronic health records (EHRs), laboratory documentation and medical histories to give advice regarding diagnosis, treatment regimens, and medication protocols. Clinicians can make more evidence-based, quicker, and personalized interventions by using AI analysis to identify risk factors, forecast disease progression, and propose personalized interventions with the help of AI [22]. The use of AI in predictive analytics and risk assessment predicts patient outcomes, hospital readmissions and disease outbreaks. Machine learning systems can forecast health events by analyzing historical and real-time data to allow proactive interventions and resources allocation. These devices cannot be underestimated in terms of the management of chronic diseases, optimization of ICUs, and the prevention of complications [23].

Drug discovery and development is also a major area where AI is used. Conventional drug development models are not only time consuming but also very costly, however through AI algorithms, molecular structures can be analyzed, drug-target interactions predicted and possible candidates identified more effectively. This shortens the time taken in research, lowers the costs and chances of identifying effective therapies are high [24]. The field of personalized medicine is represented by AI, which creates a treatment tailored to the specifics of a patient, genetic background, and lifestyle. AI should be able to suggest patient-specific therapy through the analysis of big data and enhance their effectiveness and minimize side effects [25].

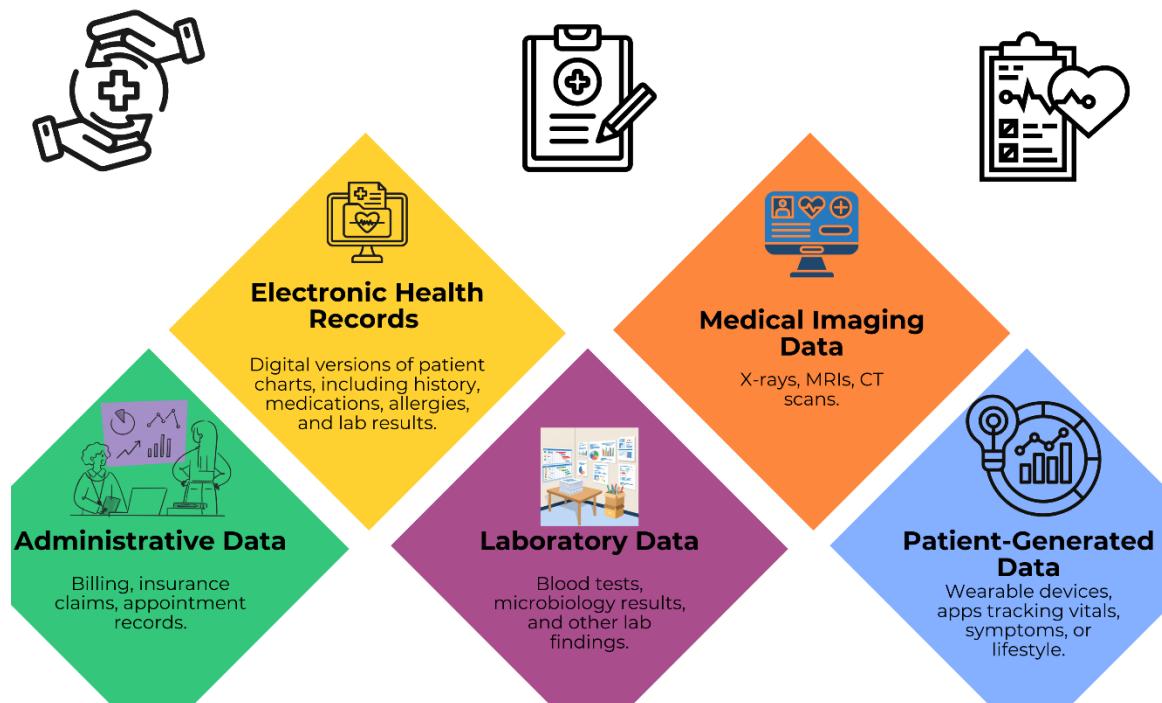
Other prominent uses are in robotic surgery where AI-controlled systems can be more precise and less risky to the patient, and in healthcare informatics where AI can be used to manage EHRs, monitor patients and increase the efficiency of administrative processes. The use of virtual health assistants and telemedicine platforms based on AI also expands healthcare accessibility especially in remote or underserved areas [26]. By improving patient outcomes, enhancing operational efficiency, minimizing human error, and expanding the group of medical research, AI applications to healthcare are not only beneficial but also vastly enlarge the breadth of medical research. With the AI technology on the rise, it is likely to become involved in the healthcare sector and help bridge the gap between the complicated nature of medical data and the clinical practicality [27].

ARTIFICIAL INTELLIGENCE TECHNIQUES AND ALGORITHMS IN HEALTHCARE

AI in healthcare is based on a wide range of computational methods and algorithms which allow learning through data, finding patterns, and making smart decisions by machines. These approaches constitute the heart of AI applications as these systems can do, among others, disease diagnosis, treatment planning, patient monitoring, and personalized medicine. These are the techniques that one should understand to value the way AI changes the contemporary healthcare. One of the most popular AI methods in medical care is supervised learning [28]. Under this method, models are trained using

labeled data in which the input data is associated with known results. The decision trees, support vectors machines, and logistic regression algorithms are employed to investigate clinical conditions, forecast patient outcomes, and single out individuals at a high risk. As an example, supervised learning can be used to forecast the risk of diabetes or heart disease, depending on the demographics of a patient, their lifestyle, and the laboratory findings [29].

Unsupervised learning on the other hand, works with unlabeled data, and seeks to discover some unknown structures, patterns, or groupings. Commonly applied algorithms in patient stratification include clustering algorithms e.g. k-means or hierarchical clustering to associate subgroups with similar disease profiles or response to treatment. Dimensionality reduction methods such as principal component analysis (PCA) are also useful methods of handling huge datasets in healthcare because they identify the most meaningful attributes that can be analyzed [30]. Machine learning and deep learning in particular have been especially revolutionary when it comes to the treatment of complex and high-dimensional healthcare data. Convolutional Neural Networks (CNNs) can be trained to deal with image data, e.g. to analyze X-rays, MRIs, and CT scans. Recurrent Neural Networks (RNNs) and transformers can be used in sequential data such as electrocardiograms (ECGs), medical time-series data and natural language processing (such as clinical notes or patient records) [31]. The deep learning models automatically learn features of raw information, which saves people a lot of time spent on feature engineering.


The other important AI method is Natural Language Processing (NLP). NLP algorithms can be used to interpret, analyze, and generate human language and help extract meaningful insights out of unstructured clinical texts, research articles, and patient records. The most frequent NLP applications in the field of healthcare include named entity recognition, sentiment analysis, and text summarization. Explainable AI (XAI) is becoming relevant in medical AI [32]. XAI methods also make the decisions of AI models interpretable, transparent, and this is important to establish trust between healthcare professionals. Such techniques as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) are used to explain the predictions, and they assist clinicians to comprehend and verify AI suggestions [33]. The computational foundation of these AI methods and algorithms is used in advanced healthcare systems to perform accurate diagnostics, effective decision-making, customized treatment, and round-the-clock patient monitoring. They are redefining clinical practice by their integration into it and eventually enhancing patient outcomes and operational efficiency [34].

DATA MANAGEMENT AND INFRASTRUCTURE

AI applications in the healthcare industry rely on data management and infrastructure. The healthcare data that is available, of good quality and organized has become an essential part of modern AI systems, and thus, efficient data management is the key to successful implementation. Medical care has created enormous volumes of non-homogeneous data, such as electronic health records (EHRs), medical imaging, laboratory data, genomic codes, wearable device data and live patient data. The storage of these varied datasets demands high-tech storage systems, strong servers and simplified data processing streams [35]. The importance of Big Data in healthcare has been on the rise since the volume, variety, and velocity of medical data keep increasing. The algorithms developed by AI require huge and quality data to be taught patterns and predict accurately [36]. They are processed using such techniques as distributed computing and parallel processing to analyze and work with these large datasets. To establish that AI models will be trained on credible data, it is necessary to properly curate, clean, and standardize the data, as inaccurate predictions might be made based on low-quality data and, in the worst case, cause detrimental clinical choices [37].

Types of Healthcare Data

Figure 3. Types of healthcare data

The concept of cloud computing has transformed the way data is managed in healthcare by offering the ability to store and process the data in a scale and flexibly. Healthcare organizations can store the enormous quantities of patient data safely, execute AI models effectively, and interoperate across

several institutions on the cloud systems. Telemedicine, remote monitoring, and other data-sharing programs can also be effectively implemented on cloud-based infrastructures, which promotes AI-based healthcare accessibility and scalability [38]. Edge computing is an extension of cloud solutions that will generate data that is nearer to the source, like in a medical instrument or wearable sensor. This method will minimize the latency, improve real-time decisions and patient monitoring, especially in a critical care or remote healthcare environment. Edge computing makes AI models effective even in the case of limited internet connectivity and is needed to respond to interventions of time requirements more rapidly [39].

Information privacy and security is a vital issue in healthcare. The information of patients is very sensitive, and there are regulatory frameworks, including HIPAA, GDPR, and other national regulations, requiring a high level of protection of personal health data. To avoid breaches of AI systems, they should be equipped with encryption, anonymization, and secure access controls. The adherence to these regulations is not only a legal outcome but one of the keys to guaranteeing that patients will trust AI-driven healthcare solutions [40]. In order to be used to its best in healthcare, AI requires proper data management and well-developed infrastructure. With big data analytics combined with cloud and edge computing and effective security solutions, healthcare organizations can leverage AI systems to offer the right diagnostics, predictive intelligence, customized therapies, and effective healthcare delivery, which will eventually enhance patient outcomes and operational efficiency [41].

LEGAL, REGULATORY AND ETHICAL

There are vast advantages to the implementation of artificial intelligence in the healthcare sector, yet a lot of ethical, legal, and regulatory concerns emerge. These are essential issues since healthcare is an area that deals with highly personal information of patients, life-changing choices, and high-stakes results. To make AI technologies safe, trustworthy and equitable, it is important to consider these aspects to encourage their common application in clinical practice. Some of the highest ethical and legal issues are patient privacy and data protection [42]. AI systems demand massive quantities of patient data such as electronic health records, genomic data, and real-time monitoring data. Illegal access, violation, or misuse of this sensitive data can be disastrous. The legislation and regulations including the Health Insurance Portability and Accountability Act (HIPAA) in the United States, the General Data Protection Regulation (GDPR) in Europe, and other national healthcare data policies require tight control, encryption, and anonymity of patient information [43]. The adherence to these regulations is critical in ensuring the protection of the rights of the patient and preservation of trust. Another ethical problem is prejudice and impartiality of AI models. The AI systems are trained using

past information, which might be biased due to demographic, socioeconomic, or even clinical practice backgrounds. Unless these biases are resolved, AI might contribute to differences in healthcare provision, resulting in unequal treatment results of various groups of patients. Fairness-conscious machine learning, ongoing auditing, and a variety of data collection techniques are the techniques applicable to reduce such risks and encourage fair care. Other important ethical aspects include transparency and interpretability [44]. Clinicians and patients should be aware of the decision-making process of an AI model, especially in the context of a high-stake situation, such as diagnosis, prescriptive therapy, or drug recommendation. Explainable AI (XAI) techniques give understandable information about the behavior of models, which builds trust and allows making informed clinical choices [45]. Lack of transparency may compromise accountability and professional responsibility in the field of healthcare.

There is another complexity of regulatory compliance and approval. Medical devices and software that are based on AI are under the control of regulatory agencies, including the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), and other national governments. These agencies assess AI system safety, efficacy and reliability prior to its clinical implementation. The safety and effectiveness of AI solutions will have to be monitored over time, evaluated after market introduction, and updated to maintain safety and effectiveness [46]. The responsible use of AI in healthcare includes the ethical, legal, and regulatory aspects of use. To establish trust among all clinicians and patients, provide equitable healthcare delivery, and keep everyone accountable, it is imperative to address privacy, fairness, transparency, and compliance. To overcome these challenges to make the most out of AI technologies in modern medicine, a multidisciplinary strategy that requires the participation of computer scientists, healthcare professionals, ethicists, and policymakers is needed [47].

CHALLENGES AND LIMITATIONS

Although artificial intelligence has a revolutionary potential in the field of healthcare, there are some crucial challenges and limitations associated with its use, which should be mitigated to guarantee safe, efficient, and equal utilization. These issues cut across technical, clinical, operational, and ethical sectors, which depict the multi-faceted ness of introducing AI to health care systems. Quality of data and its availability is still a major issue [47]. To operate with high performance, AI models need a significant amount of high-quality data of diverse kinds and well-known annotations. Nevertheless, healthcare data can be disjointed across several organizations, in an incompatible format and can include errors or values that are not available. The lack of high-quality data, particularly with rare diseases or misrepresented populations, may decrease the accuracy and

generalizability of the models and create models that make inaccurate predictions [48].

Transparency and model interpretability are the key challenges of AI in healthcare. Most developed AI models, especially deep learning networks, are black boxes, in which the results are not well explained. The problem of clinicians not trusting AI recommendations they do not comprehend may present itself in high-stakes scenarios, including when they are diagnosing or developing a treatment plan or even performing surgery [49]. Explainable AI (XAI) methods are under development, and it is difficult to remain fully transparent and still predictive at the same time. Incorporation to the workflow is operationally challenging. The deployment of the AI systems necessitates modification of current processes, employee education, and integration with electronic health records (EHRs) and other hospital systems. The improperly implemented AI tools can disrupt the workflow, lower the efficiency, or lead to opposition between healthcare providers. The integration needs to be seamlessly achieved to make AI improve and not slow down clinical decision-making [50].

Ethical and regulatory issues also restrict the wide usage. Patient privacy, data security, algorithm bias, and accountability are some of the issues that should be handled cautiously. The regulatory acceptance procedures of AI-technology based medical devices and programs are complicated and dynamic, demanding large-scale checking and tracking. Slow deployment and adoption can be caused by delays or uncertainty during compliance [51]. Other impediments include scalability and cost. The creation, education, and support of AI models are also significantly resource-consuming and skill-intensive in computation and expertise, making them inaccessible in every health care organization, especially in low-resource areas. The AI solutions may be restricted due to high infrastructure, data acquisition and model upgrade costs [52].

The potential of AI to revolutionize healthcare is enormous, and it is important to overcome its challenges to implement it safely and effectively. The quality of data, its interpretability, its integration with a workflow, ethical considerations, and scalability are the problems that should be handled in an organized manner [53]. To surmount these drawbacks, it will be necessary to involve computer scientists, clinicians, policymakers, and industry stakeholders so that AI technologies can positively influence patient outcomes without creating risks and inequalities [54].

FUTURE DIRECTION AND NEW TRENDS

The use of artificial intelligence in the healthcare sector is bound to gain a lot in the future due to continuous studies on the topic, technological developments, and the growing access of medical information. Developing trends show that AI will only increase to more supportive systems to more integrated and more intelligent systems to boost decision-making, personalization of care and overall healthcare provision [55]. Federated learning is one of the potential trends that enable AI models to

be trained on a large scale without raw patient information across different healthcare facilities. The strategy resolves the issue of privacy and uses a variety of datasets, enhancing the model generalizability, and minimizing bias. Federated learning can be especially useful in the international cooperation, as it allows AI-powered systems to be trained on a wider population without violating privacy of patients [56].

Another fast-developing field that has a possible application in the medical sphere is generative AI. Generative AI can complement the use of small datasets by generating suitable synthetic data, assist in the training of medical imaging models, simulate drug interactions in research, and supplement small datasets. It is also used in patient education and one-on-one communication on health, where a specific recommendation is based on personal medical records. It is likely that AI in telemedicine and remote healthcare will grow [57]. Virtual health assistants, chatbots and diagnostic machines that are driven by AI can improve care access, especially in the underserved or remote areas. Together with wearable devices and constant monitoring of the patient, AI could deliver real-time feedback, identify any anomalies at an early stage, and allow timely intervention without having to visit the hospital regularly based on current health status [58].

Another wave of the future of healthcare will be human-AI collaboration. AI is not intended to replace clinicians but more frequently, it is being developed to supplement the human decision-making process by providing insights or identifying risks and simplifying workflow. This model of teamwork increases precision, minimizes mistakes, and enables medical workers to devote their attention to more complicated clinical decisions and communication with the patient [59]. The further development of multi-modal AI systems, which combine various types of data, including imaging, genomic and clinical text data, will enhance precision of diagnosis as well as customized treatment plans. These systems are able to detect patterns and correlations that could not have been detected with human analysis alone, which allows precision medicine and efficient patient care [60].

Ethical regulations and regulatory frameworks are changing in order to support such innovations. Attempts to make AI systems explainable, fair and safe will continue to affect research and implementation striking a balance between innovation and patient safety and trust. The future of AI in healthcare is toward more intelligent and collaborative and patient-centered systems [61]. Healthcare delivery can be made more efficient, accessible, and accurate by relying on federated learning, generative AI, telemedicine, multi-modal analytics, and human-AI collaboration and eventually lead to better patient outcomes and change modern medicine.

CONCLUSION

Artificial intelligence has become a groundbreaking technology in the field of computer science and healthcare, which promises to transform the opportunities of patient care, optimize clinical processes, and speed up medical studies like never before. Since the dawn of rule-based expert systems to the current days of deep learning, natural language processing, and multi-modal AI, the history of AI in healthcare increases pressure on utilizing computational intelligence to solve complicated medical problems. AI integration has facilitated important progress in diagnostic quality, predictive analytics, personalized medicine, robotic-assisted surgery, and healthcare informatics and has proven its extensive and expanding relevance to clinical and administrative practice. Machine learning of AI, deep learning, computer vision, natural language processing, and reinforcement learning- offer the computing capabilities required to process large amounts of heterogeneous medical data. These methods can help AI systems to identify trends, forecast results, and provide intuition that humans might not be able to make, thus assisting clinicians in making more informed and evidence-based decisions. The use of these techniques in the fields of medical imaging, clinical decision support, drug discovery, patient monitoring, and telemedicine is an illustration of how flexible and effective AI can be in health.

Nevertheless, AI in healthcare has a number of severe challenges and limitations in spite of its potential. The data quality and accessibility continue to be one of the limitations because the functioning of AI models is reliant on the availability of correct, extensive, and heterogeneous data. Interpretability and transparency of models are still developing issues, since the idea of more complex black box algorithms can become an obstacle to clinical trust and acceptance. Scalability, costs of operation, and ethical and regulatory considerations also make it difficult to adopt AI because it needs to be integrated into current healthcare practices. Bias, fairness, patient privacy and compliance with a system, like HIPAA and GDPR, are critical factors to be addressed to implement AI in a responsible and safe way. In the future, such new trends as federated learning, generative AI, multi-modal analytics, and improved human-AI collaboration have a bright perspective of removing these limitations. Such improvements can help make AI systems more fair and comprehensible and accessible and increase the scope of health care services, especially in remote or underserved areas. The role of AI is increasingly being placed as an adjunct to clinicians, contributing to human expertise, and not eliminating it, and supporting precision medicine, early disease diagnosis, and better patient care.

Artificial intelligence is a paradigm shift in the medical field that integrates the potential of computer science and the intricacies of medicine. Through the solution of existing issues, following ethical and

regulatory requirements, and the adoption of new technologies, AI can radically change the healthcare systems. Its future evolution is not only better patient outcomes, increased clinical effectiveness, and less human error but also the development of more customized, accessible, and smart healthcare solutions. This is why the integration of AI, data, and medical knowledge opens a new era in healthcare, as innovative technologies and human knowledge and experience can collaborate to provide patients with safer, faster, and more effective care.

REFERENCES

- [1]. Stafie CS, Sufaru IG, Ghiciuc CM, Stafie II, Sufaru EC, Solomon SM, Hancianu M. Exploring the intersection of artificial intelligence and clinical healthcare: a multidisciplinary review. *Diagnostics*. 2023 Jun 7;13(12):1995.
- [2]. Badawy M. Integrating artificial intelligence and big data into smart healthcare systems: A comprehensive review of current practices and future directions. *Artificial Intelligence Evolution*. 2023 Aug 18:133-53.
- [3]. Shah V, Shukla S. Unveiling and Exploring the Intersection of Artificial Intelligence and Machine Learning. *INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST)*. 2019;3(2):94-110.
- [4]. Singh A, Gulfisha S, Koshta A, Mane S. Exploring the Fundamental Aspects of Artificial Intelligence: A Comprehensive Overview. *AI Innovations in Drug Delivery and Pharmaceutical Sciences; Advancing Therapy through Technology*. 2024 Nov 18:28-61.
- [5]. Almanasra S. Applications of integrating artificial intelligence and big data: A comprehensive analysis. *Journal of Intelligent Systems*. 2024 Nov 10;33(1):20240237.
- [6]. Awad WA, Mahmoud A. The Intersection of AI, Cloud Computing, and Healthcare: A Comprehensive Overview. *The Role of Artificial Intelligence in Advancing Applied Life Sciences*. 2025:379-404.
- [7]. Damar M, Yüksel İ, Çetinkol AE, Aydin Ö, Küme T. Advancements and integration: a comprehensive review of health informatics and its diverse subdomains with a focus on technological trends. *Health and Technology*. 2024 Jul;14(4):635-48.
- [8]. Fadhel MA, Duhaim AM, Albahri AS, Al-Qaysi ZT, Aktham MA, Chyad MA, Abd-Alaziz W, Albahri OS, Alamoodi AH, Alzubaidi L, Gupta A. Navigating the metaverse: unraveling the impact of artificial intelligence—a comprehensive review and gap analysis. *Artificial Intelligence Review*. 2024 Aug 20;57(10):264.
- [9]. Balakrishna S, Solanki VK. A comprehensive review on ai-driven healthcare transformation. *Ingeniería Solidaria*. 2024 May 1; 20(2).

- [10]. Ashiwaju BI, Orikpete OF, Uzougbo CG. The intersection of artificial intelligence and big data in drug discovery: a review of current trends and future implications. *Matrix Science Pharma*. 2023 Apr 1;7(2):36-42.
- [11]. Nazar M, Alam MM, Yafi E, Su'ud MM. A systematic review of human–computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. *IEEE Access*. 2021 Nov 12;9:153316-48.
- [12]. Shafi I, Fatima A, Afzal H, Díez ID, Lipari V, Breñosa J, Ashraf I. A comprehensive review of recent advances in artificial intelligence for dentistry e-health. *Diagnostics*. 2023 Jun 28;13(13):2196.
- [13]. Laad M, Maurya R, Saiyed N. Unveiling the vision: A comprehensive review of computer vision in AI and ML. In 2024 International conference on advances in data engineering and intelligent computing systems (ADICS) 2024 Apr 18 (pp. 1-6). IEEE.
- [14]. Kazanskiy N, Khabibullin R, Nikonorov A, Khonina S. A comprehensive review of remote sensing and artificial intelligence integration: advances, applications, and challenges. *Sensors*. 2025 Sep 25;25(19):5965.
- [15]. Ahmed A, Xi R, Hou M, Shah SA, Hameed S. Harnessing big data analytics for healthcare: A comprehensive review of frameworks, implications, applications, and impacts. *IEEE Access*. 2023 Oct 10;11:112891-928.
- [16]. Likhitkar B, Joshi A, Solanki S, Parasher S. Exploring the Intersection of Artificial Intelligence and Financial Decision-Making: A Comprehensive Review. In 2024 International Conference on Cybernation and Computation (CYBERCOM) 2024 Nov 15 (pp. 31-37). IEEE.
- [17]. Ali M. Bridging Biology and Technology: Ai Applications in Healthcare and Poultry Systems. *Journal of Research and Multidisciplinary Explorations*. 2025 Sep 2;1(1):18-26.
- [18]. Kasula BY. AI applications in healthcare a comprehensive review of advancements and challenges. *International Journal of Management Education for Sustainable Development*. 2023 Dec 30;6(6):2023.
- [19]. Hamdoun SH, Abed MQ, Salman SM, Al-Bayati HN, Balina O. The Intersection of Statistics and Machine Learning: A Comprehensive Analysis. *Journal of Ecohumanism*. 2024;3(5):406-21.
- [20]. Yadav U, Shrawankar U. Artificial intelligence across industries: A comprehensive review with a focus on education. *AI applications and strategies in teacher education*. 2025:275-320.

- [21]. Fieldhouse JK, Ge J, Randhawa N, Wolking D, Genovese BN, Mazet JA, Desai A. The intersection of artificial intelligence with qualitative or mixed methods for communicable disease research: a scoping review. *Public Health*. 2025 Nov 1;248:105961.
- [22]. Zeng Y, Liao B, Li Z, Hua C, Li S. A comprehensive review of recent advances on intelligence algorithms and information engineering applications. *IEEE Access*. 2024 Sep 16.
- [23]. Issrani R, Zeeshan HM, Qamar N, Iqbal A. Exploring the Intersection of Artificial Intelligence and Oral Cancer: Diagnostic Advances, Genetic Insights, and Precision Medicine. *Iranian Journal of Blood and Cancer*. 2025 Mar 30;17(1):47-63.
- [24]. Abrar M, Khalid S, Ullah R. The intersection of artificial intelligence and assistive technologies in the diagnosis and intervention of mental health conditions. *Artificial Intelligence Review*. 2026 Feb;59(2):40.
- [25]. Ng JY, Cramer H, Lee MS, Moher D. Traditional, complementary, and integrative medicine and artificial intelligence: Novel opportunities in healthcare. *Integrative medicine research*. 2024 Mar 1;13(1):101024.
- [26]. Santamato V, Tricase C, Faccilongo N, Iacoviello M, Marengo A. Exploring the impact of artificial intelligence on healthcare management: a combined systematic review and machine-learning approach. *Applied Sciences*. 2024 Nov 6;14(22):10144.
- [27]. Ali AM, Mohammed MA. A comprehensive review of artificial intelligence approaches in omics data processing: evaluating progress and challenges. *International Journal of Mathematics, Statistics, and Computer Science*. 2024;2:114-67.
- [28]. Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, Pulgar R, Pérez MD, Herrera LJ. Applications of artificial intelligence in dentistry: A comprehensive review. *Journal of Esthetic and Restorative Dentistry*. 2022 Jan;34(1):259-80.
- [29]. Mohammad AS, Mohammad SI, Vasudevan A, Al-Daoud K, Ramachandaran SD, Mohammad A, Ling AW, Hai ST, Rusuli MS. Exploring the Intersection of Robotics, Artificial Intelligence, and Healthcare: A Bibliometric Analysis. In *Empowering Business Through Technology: Innovations Shaping Our Future* 2026 Jan 2 (pp. 107-119). Cham: Springer Nature Switzerland.
- [30]. Anjum KN, Raju MA, Saikat MH, Avi SP, Islam KT, Hoque R, Imam T. Exploring the multifaceted impact of artificial intelligence and the internet of things on smart city management. *Journal of computer science and technology studies*. 2024 Mar 18;6(1):241-8.

- [31]. Li CC, Hassan R, Moi SH, Sujon KM, Kasim S. Intersection of Artificial Intelligence and Machine Learning in Medical Animation: A Systematic Mapping Study. International Journal on Advanced Science, Engineering & Information Technology. 2025 Jul 1;15(4).
- [32]. Liu H, Bilc MI, Ng JY. Research at the intersection of Traditional, Complementary, and Integrative Medicine and Artificial Intelligence: A protocol for a bibliometric analysis. International Journal of Ayurveda Research. 2025 Oct 1;6(4):349-54.
- [33]. Latif S, Usman M, Manzoor S, Iqbal W, Qadir J, Tyson G, Castro I, Razi A, Boulos MN, Weller A, Crowcroft J. Leveraging data science to combat COVID-19: A comprehensive review. IEEE Transactions on Artificial Intelligence. 2020 Sep 2;1(1):85-103.
- [34]. Pawuś D, Porażko T, Paszkiel S. Automation and Decision Support in the Area of Nephrology Using Numerical Algorithms, Artificial Intelligence, and Expert Approach: Review of the Current State of Knowledge. IEEE Access. 2024 Jun 12;12:86043-66.
- [35]. Shah D, Dixit R, Shah A, Shah P, Shah M. A comprehensive analysis regarding several breakthroughs based on computer intelligence targeting various syndromes. Augmented Human Research. 2020 Dec;5(1):14.
- [36]. Assiry AA, Alrehaili RS, Mahnashi A, Alkam H, Mahdi R, Hakami R, Alshammakhy R, Almallahi W, Alhawsah Y, Khalil AS. How is artificial intelligence transforming the intersection of pediatric and special care dentistry? A scoping review of current applications and ethical considerations. Prosthesia. 2025 Sep 17;7(5):119.
- [37]. Vig K, Kaunert C, Singh B, editors. Intersections of Law and Computational Intelligence in Health Governance. IGI Global; 2024 Aug 23.
- [38]. Hussain A. Artificial Intelligence at the Crossroads: Transformative Applications in Healthcare, Poultry Science, Computer Science, ChatGPT, Cybersecurity, and Food Processing. American Journal of Artificial Intelligence and Computing. 2025 Aug 17;1(2):145-63.
- [39]. Yang Y, Siau K, Xie W, Sun Y. Smart health: Intelligent healthcare systems in the metaverse, artificial intelligence, and data science era. Journal of Organizational and End User Computing (JOEUC). 2022 Jan 1;34(1):1-4.
- [40]. Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, Subbarayalu AV, Al Muhanna D, Al-Muhanna FA. A review of the role of artificial intelligence in healthcare. Journal of personalized medicine. 2023 Jun 5;13(6):951.
- [41]. Susanto LJ, Fernando LR, Gunawan A. The Intersection of Artificial Intelligence and Cloud Computing: Trends, Challenges, and Opportunities in a Systematic Literature Review. In2025

IEEE International Conference on Emerging Trends in Engineering and Computing (ETECOM) 2025 Oct 29 (pp. 1-6). IEEE.

[42]. Bisht S, Dhabalia D, Al-Ansari A, Benita A, Jaaywel WS, Mezaal AA, Almusawi M, Sefeer B. Examining the Intersection of Artificial Intelligence and Biosensors in Healthcare: Complex Neurodegenerative Issues. In 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) 2024 May 14 (pp. 1004-1007). IEEE.

[43]. Alomari G. Artificial Intelligence in Healthcare and Food Systems: Applications of ChatGPT, Machine Learning, and Emerging Insights in Poultry Science and Alternative Meats. *Journal of Research and Multidisciplinary Explorations*. 2025 Sep 10;1(1):36-42.

[44]. Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging. *Diagnostics*. 2023 Aug 25;13(17):2760.

[45]. Bhumichai D, Smiliotopoulos C, Benton R, Kambourakis G, Damopoulos D. The convergence of artificial intelligence and blockchain: The state of play and the road ahead. *Information*. 2024 May 9;15(5):268.

[46]. Khan M, Bacha A. AI-Driven Cybersecurity in Healthcare: The Transformative Potential of Generative AI. *Global Research Repo*. 2025 Nov 3;1(3):157-81.

[47]. Khakpaki A. Advancements in artificial intelligence transforming medical education: a comprehensive overview. *Medical education online*. 2025 Dec 31;30(1):2542807.

[48]. Bacha A, Zainab H. AI for Remote Patient Monitoring: Enabling Continuous Healthcare outside the Hospital. *Global Journal of Computer Sciences and Artificial Intelligence*. 2025 Jan 23;1(1):1-6.

[49]. Vasquez Jr VM, McCabe M, McKee JC, Siby S, Hussain U, Faizuddin F, Sheikh A, Nguyen T, Mayer G, Grier J, Dhandayuthapani S. Transforming cancer care: a narrative review on leveraging artificial intelligence to advance immunotherapy in underserved communities. *Journal of clinical medicine*. 2025 Jul 29;14(15):5346.

[50]. Al-Assaf K, Bahroun Z, Ahmed V. Transforming service quality in healthcare: A comprehensive review of healthcare 4.0 and its impact on healthcare service quality. *InInformatics* 2024 Dec 2 (Vol. 11, No. 4, p. 96). MDPI.

[51]. Triantafyllopoulos L, Paxinou E, Feretzakis G, Kalles D, Verykios VS. Mapping how artificial intelligence blends with healthcare: insights from a bibliometric analysis. *Future Internet*. 2024 Jun 23;16(7):221.

[52]. Joshi A, Kumar V, Chauhan N, Kumar A, Singh RK. The Intersection of AI, ML, and Industry: A Review of Emerging Trends in Real-World Applications. In2024 4th International Conference on Advancement in Electronics & Communication Engineering (AECE) 2024 Nov 22 (pp. 769-773). IEEE.

[53]. Mohammad Amini M, Jesus M, Fanaei Sheikholeslami D, Alves P, Hassanzadeh Benam A, Hariri F. Artificial intelligence ethics and challenges in healthcare applications: a comprehensive review in the context of the European GDPR mandate. *Machine Learning and Knowledge Extraction*. 2023 Aug 7;5(3):1023-35.

[54]. Abbas SR, Seol H, Abbas Z, Lee SW. Exploring the role of artificial intelligence in smart healthcare: a capability and function-oriented review. In*Healthcare* 2025 Jul 8 (Vol. 13, No. 14, p. 1642). MDPI.

[55]. Ghaffar A, Arshad A, Sultan SA, Siddqiue MU, Manzoor A. MEDIA INTELLIGENCE: AI-DRIVEN INNOVATIONS AT THE CROSSROADS OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY. *Spectrum of Engineering Sciences*. 2025 May 26;3(5):748-59.

[56]. Bacha A, Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends in Science and Technology*. 2025 Jan 24;1(1):1-4.

[57]. Buttar AM, Arshad MN, Nayyar A. Exploring the Intersection of Biology and Computing: Road Ahead to Bioinformatics. *Artificial Intelligence and Machine Learning in Drug Design and Development*. 2024 Jul 12:67-91.

[58]. Amissah DK, Boante LM, Appati JK. An Intersection of Artificial Intelligence and Healthcare: A Focus on Polycystic Ovary Syndrome Diagnosis. In*Operations Research Forum* 2025 Nov 7 (Vol. 6, No. 4, p. 165). Cham: Springer International Publishing.

[59]. Neoaz N, Bacha A, Khan M, Sherani AM, Shah HH, Abid N, Amin MH. AI in Motion: Securing the Future of Healthcare and Mobility through Cybersecurity. *Asian Journal of Engineering, Social and Health*. 2025 Jan 29;4(1):176-92.

[60]. Mienye ID, Swart TG. A comprehensive review of deep learning: Architectures, recent advances, and applications. *Information*. 2024 Nov 27;15(12):755.

[61]. Agrawal K, Goktas P, Kumar N, Leung MF. Artificial intelligence in personalized nutrition and food manufacturing: a comprehensive review of methods, applications, and future directions. *Frontiers in Nutrition*. 2025 Jul 23; 12:1636980.

